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Abstract

The expanded equations for torque and force on a cylindrical permanent magnet
core in a large-gap magnetic suspension system are presented. The core is assumed to
be uniformly magnetized, and equations are developed for two orientations of the
magnetization vector. One orientation is parallel to the axis of symmetry, and the
other is perpendicular to this axis. Fields and gradients produced by suspension sys-
tem electromagnets are assumed to be calculated at a point in inertial space which
coincides with the origin of the core axis system in its initial alignment. Fields at a
given point in the core are defined by expanding the fields produced at the origin as a
Taylor series. The assumption is made that the fields can be adequately defined by
expansion up to second-order terms. Examination of the expanded equations for the
case where the magnetization vector is perpendicular to the axis of symmetry reveals
that some of the second-order gradient terms provide a method of generating torque
about the axis of magnetization and therefore provide the ability to produce six-
degree-of-freedom control.

Introduction

This paper develops the expanded equations for
torque and force on a cylindrical permanent magnet core
in a large-gap magnetic suspension system. The core is
assumed to be uniformly magnetized, and equations are
developed for two orientations of the magnetization vec-
tor. One orientation is parallel to the axis of symmetry,
and the other is perpendicular to this axis. Fields and gra-
dients produced by suspension system electromagnets
are assumed to be calculated at a point in inertial space
which coincides with the origin of the core axis system in
its initial alignment with a reference inertial axis system.
Fields at a given point in the core are defined by expand-
ing the fields produced at the origin as a Taylor series.
The assumption is made that the fields can be adequately
described by expansion up to second-order terms. The
expansion of the fields and gradients is presented in
appendix A.

The equations for torques and forces on a magnetic
core that are produced by a large-gap magnetic suspen-
sion system have been presented and discussed in a num-
ber of papers. For example, see references 1 through 6.
The torques on the core are usually approximated as a
function of the external or applied fields at the centroid
of the core, and the forces on the core are usually approx-
imated as a function of the gradients of the applied fields
at the centroid. It is generally assumed that terms that are
a function of second-order or higher gradients of the
applied fields at the centroid can be neglected. In practi-
cal applications that involve large-gap magnetic suspen-
sion systems, these assumptions have proven to be valid.
For an axisymmetric core, such as a cylinder, it can be
shown that if the direction of magnetization is along the
axis of symmetry, then the torque about that axis, pro-
duced by the applied fields and gradients of the applied
fields, is always zero (ref. 3). Various methods of over-

coming this constraint, which include shaping the core
and using nonuniform three-dimensional magnetization,
are discussed in references 4 and 7. However, examina-
tion of the expanded equations for a cylindrical core
reveals that for the case of uniform magnetization per-
pendicular to the axis of symmetry, some of the second-
order gradient terms provide a method of generating
torque about the axis of magnetization and therefore the
ability to produce six-degree-of-freedom control (ref. 8).
For completeness, all gradient terms for expansion of the
fields up to second order are presented.

Finally, instead of developing the torque and force
equations from a set of governing equations that are a
function of core volume, core magnetization vector, and
suspension system fields and gradients, appendix B pre-
sents a development that begins at a more fundamental
level in an attempt to provide better insight into the ori-
gin of these equations than is commonly available in the
literature.

Symbols

A area, m2

a radius of core, m

B magnetic flux density vector, T

expanded magnetic flux density vector, T

[∂B] matrix of field gradients, T/m

[∂ ] matrix of expanded field gradients, T/m

F total force vector on core, N

δF force vector on incremental volume of core, N

I coil current vector, A

l length of core, m

m magnetic moment vector, A-m2

B̃

B̃
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δm magnetic moment vector of dipole with incre-
mental volume, A-m2

M magnetization vector, A/m

Qm pole strength, A-m

r position vector, m

T total torque vector on core, N-m

δT torque vector on incremental volume of core,
N-m

δ torque on incremental volume of core about
core origin, N-m

Tm inertial coordinate to suspended-element coor-
dinate vector-transformation matrix

U  potential energy

v core volume, m3

W work

incremental volume, m3

x, y, z coordinates in orthogonal axis system, m

Euler orientation for 3, 2, 1 rotation sequence,
rad

gradient operator

Subscripts:

x, y, z components along x-, y-, z-axes, respectively

ij partial derivative of i component inj-direction

(ij )k          partial derivative ofij partial derivative in
k-direction

Matrix notations:

[  ]T transpose of matrix

  row vector

A bar over a symbol indicates that it is referenced to
suspended-element coordinates.

Magnetic Torques and Forces

The torques and forces on a cylindrical permanent
magnet core are developed in this section by integrating
the equations for torques and forces on an incremental
volume of the core with magnetic momentM δv over the
core volume. These equations are developed in appendix
B. Figure 1 shows the cylindrical core and the core coor-
dinate system. The core coordinate system consists of a
set of orthogonal  body-fixed axes that are initially
aligned with a set of orthogonalx-, y-, z-axes fixed in
inertial space. In order to define the fields and gradients

T̃

δv

θ

∇

x y z, ,

Figure 1.  Core coordinate system.

a

l/2

l/2

x, x
__

y, y
__

z, z
__
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at any point in the core, the fields and gradients at the ori-
gin of the core axis system are expanded as a Taylor
series. It is assumed that the fields can be adequately
described by expansion up to second-order terms. The
expanded fields and gradients in both inertial and core
coordinates are presented in appendix A. For simplicity
in developing the equations in this section, relative
motion between the core and the reference inertial coor-
dinate system is assumed to be zero. This assumption
removes the requirement to transform between the iner-
tial and core coordinate systems and eliminates a signifi-
cant number of components which are small relative to
the fundamental terms in the equations when small-angle
assumptions are used. In particular, the transformation of
second-order gradient terms from inertial to core coordi-
nates is very complicated, as illustrated by equa-
tion (A14). The torque on an incremental volume of the
core, about the core origin, can be written as

(1)

where  and  are the torque and force on the incre-
mental volume due to the field at that location, and

 is the position vector of the incremental volume

(fig. 2). The total torque on the core can be written as

(2)

where the integration is over the core. Substituting equa-
tions (B20) and (B21) results in

(3)

The total force on the core can be written as

(4)

The term  can be written as (ref. 5)

(5)

δT̃ δT r δF×( )+=

δT δF

r
x

y

z

=

T δT̃
v
∫ δT r( δF )×+[ ]

v
∫= =

T M( B̃× ) r M( ∇ )•× B̃[ ]+{ } vd
v
∫=

F = M ∇ )B̃•( vd
v
∫

M ∇•( )B̃

M ∇•( )B̃ = ∂B̃[ ]M

Figure 2.  Incremental core volume.
x

y

z

r

δv
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where

(6)

and

(7)

In equation (6) the notation  is used.

Magnetization Along Axis of Symmetry

For orientation of the magnetization vector along the
axis of symmetry (x-axis) of the permanent magnet core,
the only nonzero term in  is  Expanding
equation (5) results in

(8)

Substituting equation (8) into the second part of equation
(3) and expanding results in

(9)

Expanding the first part of equation (3) results in

(10)

The components of equation (3) become

(11)

(12)

(13)

Evaluating  first

(14)

where  has been expanded by using a Taylor series,
as detailed in appendix A, and the notation

 has been used. All the integrals
involving first-order terms in equation (14) are zero.
Evaluating  yields

(15)

where  a is the radius of the
permanent magnet core, andl is the length (fig. 1). Since
the area of the face of the permanent magnet core is

 and the volume is  equation (15)
reduces to

(16)

Substituting in equation (14) results in

(17)

Evaluating  in a similar manner results in

(18)

which is equal to equation (17). Therefore the torques
about the axis due to second-order gradients cancel

∂B̃

B̃xx B̃xy B̃xz

B̃yx B̃yy B̃yz

B̃zx B̃zy B̃zz

=

M

Mx

My

Mz

=

fi j ∂ fi ∂j⁄=

M Mx.

∂B̃[ ]M Mx

B̃xx

B̃xy

B̃xz

=

r M ∇•( )× B̃ = Mx

B̃xy– z B̃xzy+( )

B̃xxz B̃xz– x( )

B̃xx– y B̃xyx+( )

M B̃× Mx

0

B̃z–

B̃y

=

Tx 0 Mx B̃xzy B̃xyz–( ) vd
v
∫+=

Ty Mx– B̃z vd Mx B̃( xxz
v
∫ B̃xz– x)+ vd

v
∫=

Tz Mx B̃y vd Mx B̃( xyx
v
∫ B̃xx– y)+ vd

v
∫=

B̃xzy vd
v
∫

B̃xzy vd
v
∫ Bxz y vd B xx( )z xy vd

v
∫+

v
∫=

+ B xy( )z y
2

vd
v
∫ B xz( )z+ zy vd

v
∫

B̃xz

f ij( )k ∂ ∂ fi /∂j )/∂k(=

y2 vd
v
∫

y
2

vd
v
∫ y

2
yd zd xd

y1 z( )–

y2 z( )
∫a–

a∫
l /2–

l /

∫=

a
4

4⁄( )πl=

y1 z( ) y2 z( ) a
2

z
2

– ,= =

A πa
2

= v Al,=

a
4

4⁄( )πl a
2

4⁄( )v=

B̃xzy vd
v
∫ a

2
4⁄( )vB xy( )z=

B̃xyz vd
v
∫

B̃xyz vd
v
∫ a

2
4⁄( )vB xy( )z=

x-



5

out and as expected. Going next to equa-
tion (12),

(19)

and

(20)

Substituting into equation (12) results in

(21)

Continuing to equation (13),

(22)

and

(23)

Substituting into equation (13) results in

(24)

Finally, noting that B(ij)k = B(ik)j = B(jk)i . . . and collect-
ing terms, the components of torque become

(25)

(26)

(27)

The force on the core, equation (4), can be evaluated
in a similar manner. The components of equation (4) are

(28)

(29)

(30)

Expanding the integral of equation (28) results in

(31)

Since the integrals containing first-order terms in
and  are zero, equation (31) reduces to

(32)

Evaluating equations (29) and (30) results in

(33)

and

(34)

Tx 0=

B̃z vd
v
∫ v Bz l

2
24⁄( )B zx( )x a

2
8⁄( )B zy( )y+ +=

+ a
2

8⁄( )B zz( )z

B̃xxz B̃xzx–( ) vd
v
∫ v a

2
4⁄( ) l

2
12⁄( )–[ ]B xx( )z=

Ty vM– x Bz l
2

24⁄( )B zx( )x a
2

8⁄( )B zy( )y+ +=

+ a
2

8⁄( )B zz( )z + vMx a
2

4⁄( )

l
2

12⁄( )– B
xx( )z

B̃y vd
v
∫ v By l

2
24⁄( )B yx( )x a

2
8⁄( )B yy( )y+ +=

+ a
2

8⁄( )B yz( )z

B̃xyx B̃xxy–( ) vd
v
∫ v l

2
12⁄( ) a

2
4⁄( ) ]B xx( )y–[=

Tz vMx By l
2

24⁄( )B yx( )x a
2

8⁄( )B yy( )y+ +=

+ a
2

8⁄( )B yz( )z vMx l
2

12⁄( )[+

a
2

4⁄( ) ]B xx( )y–

Tx 0=

Ty v– MxBz vMx a
2

4⁄( ) l(–
2

8)⁄ ]B xx( )z[–=

v– Mx a
2

8⁄( ) B yy( )z + B zz( )z( )

Tz vMxBy vMx l
2

8⁄( ) a(–
2

4) ]B xx( )y⁄[+=

v– Mx a
2

8⁄( ) B yy( )y + B yz( )z( )

Fx = M
x

B̃xx vd
v
∫

Fy = M
x

B̃xy vd
v
∫

Fz = M
x

B̃xz vd
v
∫

B̃xx vd
v
∫ B( xx B xx( )yy B xx( )zz+ +

v
∫=

+ B xx( )xx vd

x y,,
z

Fx = M
x

Bxx vd
v
∫ vMxBxx=

Fy = vM
x
Bxy

Fz = vM
x
Bxz
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Magnetization Perpendicular to Axis of
Symmetry

For orientation of the magnetization vector perpen-
dicular to the axis of symmetry (x-axis), the only nonzero
term in  is  Equation (5) becomes

(35)

and the second part of equation (3) becomes

(36)

The first part of equation (3) becomes

(37)

Substituting (36) and (37) into (3) results in

(38)

(39)

(40)

Evaluating the integrals as before and collecting terms
results in

(41)

(42)

(43)

The components of the force (eq. (4)) using equa-
tion (35) becomes

(44)

(45)

(46)

Discussion of Results

Examination of equations (25) to (27), (32) to (34),
(41) to (43), and (44) to (46) reveals that, for expansion
of the applied fields up to second-order terms, no cou-
pling exists between force and torque components. As
stated earlier, it is generally assumed that the higher
order torque terms, which are functions of second order
gradients, can be neglected. However, equation (43) indi-
cates that for magnetization perpendicular to the axis of
symmetry, torque about the axis of magnetization can be
generated by controlling a higher order term directly,
thus allowing the core to be controlled in six degrees of
freedom. For a cylindrical permanent magnet core mag-
netized along the axis of symmetry, from equation (25),
only five-degree-of-freedom control is possible.

Concluding Remarks

This paper has developed the expanded equations for
torque and force on a cylindrical permanent magnet core
in a large-gap magnetic suspension system. The core was
assumed to be uniformly magnetized, and equations were
developed for two orientations of the magnetization
vector. One orientation was parallel to the axis of sym-
metry of the core and the other was perpendicular to this
axis. It is generally assumed that terms that are a function
of second-order or higher gradients of the applied fields
can be neglected. In practical applications involving
large-gap magnetic suspension systems, these assump-
tions have proven to be valid. However, in the case
where the magnetization vector is perpendicular to the
axis of symmetry of the core, the expanded equations
indicate that torque about the magnetization vector can
be produced by controlling a second-order gradient
directly. This case allows the core to be controlled in six
degrees of freedom whereas a cylindrical permanent
magnet core magnetized along its axis of symmetry can
be controlled only in five degrees of freedom.

NASA Langley Research Center
Hampton, VA 23681-0001
October 24, 1996

M M z.

∂B̃[ ]M Mz

B̃xz

B̃yz

B̃zz

=

r M ∇•( )× B̃ = Mz

B̃yz– z B̃zzy+( )

B̃xzz B̃zz– x( )

B̃xz– y B̃yzx+( )

M B̃× Mz

B̃y–

B̃x

0

=

Tx Mz– B̃y vd Mz B̃( zzy
v
∫ B̃yz– z)+ vd

v
∫=

Ty Mz B̃x vd Mz B̃( xzz
v
∫ B̃zz– x)+ vd

v
∫=

Tz 0 M+ z B̃( yzx
v
∫ B̃xz– y) vd=

Tx vMzBy vMz– l
2

24⁄( )B xx( )y–=

vMz a
2

8⁄( ) B( yy( )y B yz( )z)+–

Ty vMzBx vMz 3a
2

8⁄( ) l
2

12⁄( ) ]B xz( )z–[+=

+ vMz l
2

24⁄( )B xx( )x + vMz a
2

8⁄( )B xy( )y

Tz = vM
z

l
2

12⁄( ) a
2

4⁄( ) ]B xy( )z–[

Fx = M
z

B̃xz vd
v
∫ vMzBxz=

Fy = M
z

B̃yz vd
v
∫ vMzByz=

Fz = M
z

B̃zz vd
v
∫ vMzBzz=



7

Appendix A

Expansion of Fields and Gradients About the
Nominal Operating Point of a Cylindrical Per-
manent Magnet Core

In appendix A the fields and gradients produced by
the suspension system electromagnets are expanded by
using a Taylor series about the initial suspension point of
the permanent magnet core. The assumption is made that
the fields can be adequately described by expansion up to
second-order terms. Figure 1 shows the cylindrical core
and core coordinate system. The core coordinate system
consists of a set of orthogonal  body-fixed axes
that define the motion of the core with respect to an
orthogonalx, y, z system fixed in inertial space. The core
coordinate system is initially aligned with thex, y, z sys-
tem. The transformation from inertial coordinates to core
coordinates is given by

(A1)

where  is the orthogonal transformation matrix for
a 3, 2, 1 (z, y, x) Euler rotation sequence and is defined as

(A2)

where sin has been shortened to s, cos has been shortened
to c, and , and  are angles of rotation about the
z-, y-, andx-axes, respectively. The fieldB and gradients
of B produced by the suspension system electromagnets,
which are fixed in the inertial frame, are calculated at the
origin of thex, y, z system.

ExpandingB about the origin of thex, y, z system as a
Taylor series, up to second order, results in

(A3)

where  and  is the gradient operator. Using

compact notation, each element of in equation (A3)
can be written as

(A4)

where

(A5)

 and

(A6)

Using the notation  and
 equations (A5) and (A6) can be written

as

(A7)

and

(A8)

The first-order gradients of  can be written as

(A9)

where

(A10)

x y z, ,

x

y

z

Tm[ ]
x

y

z

=

Tm[ ]

Tm[ ] =

cθzcθy sθzcθy s– θy

cθzsθysθx sθzcθx–( ) sθzsθysθx cθzcθx+( ) cθysθx

cθzsθycθx sθzsθx+( ) sθzsθycθx– cθzsθx( ) cθycθx

θz θy, θx

B̃ B r ∇•( )B 1 2⁄( ) r ∇•( )2
B+ +=

r =
x

y

z

∇

B̃

B̃i Bi

∂Bi

∂r
--------r 1 2⁄( )r T ∂2

Bi

∂r
2

-----------r++=

∂Bi

∂r
--------

∂Bi

∂x
--------

∂Bi

∂y
--------

∂Bi

∂z
--------=

∂2
Bi

∂r 2
-----------

∂ ∂Bi ∂x⁄( )
∂x

----------------------------
∂ ∂Bi ∂x⁄( )

∂y
----------------------------

∂ ∂Bi ∂x⁄( )
∂z

----------------------------

∂ ∂Bi ∂y⁄( )
∂x

----------------------------
∂ ∂Bi ∂y⁄( )

∂y
----------------------------

∂ ∂Bi ∂y⁄( )
∂z

----------------------------

∂ ∂Bi ∂z⁄( )
∂x

----------------------------
∂ ∂Bi ∂z⁄( )

∂y
----------------------------

∂ ∂Bi ∂z⁄( )
∂z

----------------------------

=

fi j ∂ fi /∂j= f i j( )k =
∂ ∂ f i /∂j( )/∂k,

∂Bi

∂r
-------- = Bix Biy Biz

∂2
Bi

∂r
2

----------- =

B ix( )x B ix( )y B ix( )z

B iy( )x B iy( )y B iy( )z

B iz( )x B iz( )y B iz( )z

B̃

B̃i j Bi j

∂ ∂Bi /∂j( )
∂r

-------------------------- r+=

∂ ∂Bi /∂j( )
∂r

-------------------------- B i j( )x B i j( )y B i j( )z=
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The expanded fields can be expressed in core
coordinates as

(A11)

where  is the displacement in core coordinates,

 and  Since, from equa-

tion (A1),

(A12)

each element of  can be expanded in inertial coordi-
nates by substituting equation (A12) into equation (A4),

(A13)

Transforming back into core coordinates,

(A14)

The expansion of equation (A14) can be simplified by
using small-angle assumptions (ref. 6). Under small-
angle assumptions,  and products
of angles are neglected. The transformation matrix
then becomes

(A15)

B̃ B r ∇•( )B 1 2⁄( ) r ∇•( )
2
B+ +=

r =
x

y

z

B Tm[ ]B,= ∇ Tm[ ]∇.=

r T m[ ]T
r=

B̃

Bi
˜ Bi

∂Bi

∂r
-------- Tm[ ]Tr 1 2⁄( )r T

Tm[ ]
∂2

Bi

∂r 2
----------- Tm[ ]Tr++=

B̃ Tm[ ]

Bx

∂Bx

∂r
--------- Tm[ ]Tr 1( /2)r T

Tm[ ]
∂2

Bx

∂r 2
------------ Tm[ ]Tr++

By

∂By

∂r
--------- Tm[ ]Tr 1( /2)r T

Tm[ ]
∂2

By

∂r 2
------------ Tm[ ]Tr++

Bz

∂Bz

∂r
--------- Tm[ ]Tr 1( /2)r T

Tm[ ]
∂2

Bz

∂r 2
----------- Tm[ ]Tr++

=

θcos 1,= θsin θ,=
Tm[ ]

Tm[ ]
1 θz θy–

θ– z 1 θx

θy θ– x 1

=
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Appendix B

Torques and Forces on a Magnetic Dipole
With Incremental Volume

The torques and forces on a magnetic dipole in a
steady magnetic field are identical to those on an infini-
tesimal current loop with the same magnetic moment
(ref. 9). Therefore, the equations for torque and force on
an infinitesimal current loop will be developed first by
using the fundamental relationship for the force on a
current-carrying-conductor element in a uniform, steady
magnetic field. For a discussion of magnetic dipoles and
infinitesimal current loops, see references 9 and 10.

Infinitesimal Current Loop

Consider a plane loop of conductor with steady cur-
rent I located in the external, uniform, steady magnetic
field B (fig. B1). In this region
The force on an elementdl of the conductor is given by
the fundamental relationship (obtained from the Lorentz
force law)

(B1)

wheredF is a vector indicating magnitude and direction
of force on the conductor element; I is the scalar magni-
tude of the current in the conductor element;dl is a vec-
tor whose magnitude equals the length of the conductor
element and whose direction is in the positive direction
of the current; andB is a vector indicating magnitude and
direction of the flux density of the external field compo-
nent. The torque on the loop can be written as

(B2)

wherer  is the position vector ofdl and the integration is
around the loop. By using the identity

(B3)

equation (B2) can be written as

(B4)

Using Stokes’s theorem and a related result (ref.9,
p. 289), the line integrals in equation (B4) can be trans-
formed into surface integrals resulting in

(B5)

where dA is a vector whose magnitude is a differential
area and whose direction is normal to the plane of the
current loop in the sense of the right-hand rule relative to
the direction of current flow,  is the gradient operator,
and the integrals are over the surface that is defined
by the conductor loop. Since  is zero and

 for constantB, equation (B5) simplifies
to

(B6)

Taking the integral results in

(B7)

An infinitesimal current loop can be defined by lettingA
go toward zero and I go toward infinity, keeping the
product IA finite. For an infinitesimal current loop, the
requirement thatB be uniform no longer exists. The
product IA is called the magnetic moment of the loop
and is designated by the letterm. Therefore equation
(B7) becomes

(B8)

The torque T acts on the infinitesimal current loop in a
direction to align the magnetic momentm with the exter-
nal fieldB. If m andB are misaligned by the angle the
magnitude of the torque is

(B9)

To increase  by the amountd  work dW must be done
against the torqueT resulting in an increase in potential
energydU:

(B10)

The potential energy of an infinitesimal current loop in
an external magnetic field can then be obtained by inte-
grating equation (B10):

(B11)

where the constant of integration is chosen to be zero
whenm is perpendicular to B. The force on the infinites-
imal current loop can be obtained from equation (B11). If
an external forceF displaces the infinitesimal current
loop by the infinitesimal distance dr , then the work done
dW will be equal to a decrease in potential energy, –dU:

(B12)

Therefore

(B13)

∇ B× ∇ B• 0.= =

dF I dl B×=

T I r dl B ) ]×(×[∫°=

r dl B )×(× dl r B•( ) B r dl•( )–=

T I r B•( )dl B r dl ]•∫°–∫°[=

T I A ∇ r B•( )×d[ ] B ∇ r )× •( Ad
s
∫–

s
∫ 

 
 

=

∇

∇ r×
∇ r B )•( B=

T I A B×d( )
s
∫=

T IA B×=

T m B×=

θ,

T mB θsin=

θ θ,

dU dW T dθ mB θdθsin= = =

U mB θcos– m B•–= =

dW F dr• dU ∇– U= dr•–= =

F ∇U– ∇ m B•( )= =
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The right-hand side of equation (B13) can be expanded
as

(B14)

Since  and  are zero, equa-
tion (B13) can be written in the form

(B15)

This form is generally used in the development of the
equations for large-gap magnetic suspension systems
(refs. 1 through 6).

Magnetic Dipole With Incremental Volume

The magnetic moment of a permanent magnet dipole
with north and south poles separated by lengthl and with
pole strengthQm is defined as

(B16)

The magnetic momentm is a vector pointing from the
south pole to the north pole. In the case of an actual mag-
net, Qm andl may be indefinite butm can be determined
and is sufficient to specify the fields of the magnet at a
large distance from it. At large distances, a magnetic
dipole with magnetic momentQml can be treated the
same as an infinitesimal current loop with magnetic
moment IA and is identical in effect ifQml = IA. There-
fore, in a steady magnetic fieldB the equations for
torques and forces on a magnetic dipole with magnetic
momentm are the same as equations (B8) and (B15).

In theory, it can be assumed that a permanent magnet
of a given volume v consists of a large number of uni-
formly distributed permanent magnet dipoles with incre-
mental volumes v which are oriented in the same

direction. The magnetic moment  of a given dipole
with incremental volume  can be conveniently
described by a quantity called the magnetizationM ,
which is defined as the magnetic moment per unit vol-
ume. That is,

(B17)

The total magnetic momentm for a given permanent
magnet can then be written as

(B18)

where the integration is over the volume of the perma-
nent magnet. Magnetization is also a vector and has the
same direction asm. If the permanent magnet is uni-
formly magnetized, that is,M  is constant over the vol-
ume of the permanent magnet, then

(B19)

For a discussion of magnetic dipoles and magnetization,
see reference 10.

The torques and forces on an incremental volume of
permanent magnet material, in terms of the magnetiza-
tion M , can then be written as

(B20)

and

(B21)

from equations (B8), (B15), and (B17).

∇ m B•( ) = m ∇ B×( ) m ∇•( )B+×
+ B ∇ m×( )× + B ∇•( )m

∇ B•( ), ∇ B×( ), ∇ m×( )

F m ∇•( )B=

m Qml=

δ

δm
δv

M δm δv⁄=

m M vd
v
∫=

m M v=

δT M B×( )δv=

δF M ∇•( )Bδv=
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Figure B1.  Plane loop of conductor with steady current I in uniform steady magnetic fieldB.

x

y

z

r
B

dl

I



12

References

1. Basmajian, V. V.; Copeland, A. B.; and Stephens, T.: Studies
Related to the Design of a Magnetic Suspension and Balance
System. NASA CR-66233, 1966.

2. Stephens, Timothy: Design, Construction, and Evaluation of a
Magnetic Suspension and Balance System for Wind Tunnels.
NASA CR-66903, 1969.

3. Covert, Eugene E.; Finston, Morton; Vlajinac, Milan; and
Stephens, Timothy: Magnetic Balance and Suspension Sys-
tems for Use in Wind Tunnels. Progress in Aerospace
Sciences,  Volume 14, D. Küchemann, P. Carriére, B.
Etkin, W.Fiszdon, N. Rott, J. Smolderen, I. Tani, and
W. Wuest, eds., Pergamon Press, 1973, pp. 27–107.

4. Britcher, C. P.: Some Aspects of Wind Tunnel Magnetic Sus-
pension Systems With Special Applications at Large Physical
Scales. NASA CR-172154, 1983.

5. Groom, Nelson J.:Analytical Model of a Five Degree of Free-
dom Magnetic Suspension and Positioning System. NASA
TM-100671, 1989.

6. Groom, Nelson J.; and Britcher, Colin P.:Open-Loop Charac-
teristics of Magnetic Suspension Systems Using Electromag-
nets Mounted in a Planar Array. NASA TP-3229, 1992.

7. Goodyer, M. J.: Roll Control Techniques on Magnetic Suspen-
sion Systems.Aeronaut. Q., vol. xviii, Feb. 1967, pt.1,
pp. 22–42.

8. Groom, Nelson J.: Description of the Large Gap Magnetic
Suspension System (LGMSS) Ground-Based Experiment.
Technology 2000, NASA CP-3109, vol. 2, 1991, pp. 365–377.

9. Clemmow, P. C.: An Introduction to Electromagnetic Theory.
Cambridge Univ. Press, 1973.

10. Kraus, John D.: Electromagnetics. McGraw-Hill Book Co.,
Inc., 1953.





Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information.  Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

11. SUPPLEMENTARY NOTES

8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

14. SUBJECT TERMS

17. SECURITY CLASSIFICATION
OF REPORT

18. SECURITY CLASSIFICATION
OF THIS PAGE

19. SECURITY CLASSIFICATION
OF ABSTRACT

20. LIMITATION
OF ABSTRACT

15. NUMBER OF PAGES

16. PRICE CODE

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

REPORT DOCUMENTATION PAGE

February 1997 Technical Paper

Expanded Equations for Torque and Force on a Cylindrical Permanent Mag-
net Core in a Large-Gap Magnetic Suspension System

WU 505-64-70-03

Nelson J. Groom

L-17495

NASA TP-3638

The expanded equations for torque and force on a cylindrical permanent magnet core in a large-gap magnetic sus-
pension system are presented. The core is assumed to be uniformly magnetized, and equations are developed for
two orientations of the magnetization vector. One orientation is parallel to the axis of symmetry, and the other is
perpendicular to this axis. Fields and gradients produced by suspension system electromagnets are assumed to be
calculated at a point in inertial space which coincides with the origin of the core axis system in its initial alignment.
Fields at a given point in the core are defined by expanding the fields produced at the origin as a Taylor series. The
assumption is made that the fields can be adequately defined by expansion up to second-order terms. Examination
of the expanded equations for the case where the magnetization vector is perpendicular to the axis of symmetry
reveals that some of the second-order gradient terms provide a method of generating torque about the axis of mag-
netization and therefore provide the ability to produce six-degree-of-freedom control.

Magnetic suspension; Large-gap magnetic suspension; Magnetic levitation; Magnetic
suspension model

13

A03

NASA Langley Research Center
Hampton, VA 23681-0001

National Aeronautics and Space Administration
Washington, DC 20546-0001

Unclassified–Unlimited
Subject Category 31
Availability: NASA CASI (301) 621-0390

Unclassified Unclassified Unclassified


